Комплекс исследований, позволяющий оценить активность свободнорадикальных процессов в организме и состояние систем антиоксидантной защиты.
Синонимы русские
Оценка окислительного стресса, оценка антиоксидантной защиты.
Синонимы английские
Assessment of oxidative stress, evaluation of antioxidant protection.
Метод исследования
Высокоэффективная жидкостная хроматография.
Какой биоматериал можно использовать для исследования?
Венозную кровь.
Как правильно подготовиться к исследованию?
Общая информация об исследовании
Окислительный (оксидативный) стресс – состояние, при котором в организме слишком много свободных радикалов – молекул без одного электрона.
В нормальных условиях внутриклеточное содержание активных форм кислорода (ROS) поддерживается на низком уровне различными ферментными системами, участвующими в редокс-гомеостазе. Поэтому окислительный стресс можно рассматривать как дисбаланс между прооксидантами и антиоксидантами в организме. В течение последних двух десятилетий окислительный стресс был одной из самых острых проблем среди биологических исследователей во всем мире. Стресс можно определить как процесс измененного биохимического гомеостаза, вызванного психологическими, физиологическими или экологическими причинами (стрессорами). Любое изменение в гомеостазе приводит к увеличению производства свободных радикалов, значительно выше детоксикационной способности местных тканей. Эти избыточные свободные радикалы затем взаимодействуют с другими молекулами внутри клеток и вызывают окислительное повреждение белков, мембран и генов. В процессе этого часто образуется еще больше свободных радикалов, вызывая цепь разрушений. Окислительные повреждения связаны с причиной многих заболеваний, таких как сердечно-сосудистые заболевания, дегенерация нейронов и онкология, а также влияют на процесс старения.
Стресс может запускаться различными стрессорами, например экстремальными условиями окружающей среды, чрезмерными физическими упражнениями или полной иммобилизацией, недоеданием. Внешние факторы, такие как загрязнение, избыточная инсоляция и курение, также вызывают образование свободных радикалов. Стресс может быть острым или хроническим. Стрессор инициирует любой из факторов, играющих решающую роль в поддержании клеточного гомеостаза. Окислительный стресс возникает, когда гомеостатические процессы терпят неудачу, а генерация свободных радикалов намного превышает способность антиоксидантной защиты организма, тем самым способствуя повреждению клеток и тканей.
Окислительный стресс является сложным процессом. Его воздействие на организм зависит от типа окислителя, от места и интенсивности его производства, от состава и активности различных антиоксидантов, а также от способности восстановительных систем.
Термин "ROS" включает в себя все нестабильные (свободные) метаболиты молекулярного кислорода (O2), которые имеют более высокую реакционную способность, чем O2 (например, супероксидный радикал, гидроксильный радикал) и нерадикальные молекулы (например, перекись водорода (H2O2). Эти ROS генерируются как побочный продукт нормального аэробного метаболизма, но их уровень увеличивается при стрессе, что является основной опасностью для здоровья.
До 1–3% легочного поступления кислорода преобразуется в ROS. В условиях нормального метаболизма непрерывное образование свободных радикалов важно для нормальных физиологических функций, таких как генерация АТФ, различные катаболические, анаболические процессы и сопровождающие клеточные окислительно-восстановительные циклы.
Центральная нервная система чрезвычайно чувствительна к повреждению свободных радикалов из-за относительно небольшой общей антиоксидантной способности. ROS, продуцируемые в тканях, могут нанести прямой ущерб макромолекулам, таким как липиды, нуклеиновые кислоты и белки. Полиненасыщенные жирные кислоты являются одной из предпочтительных целей окисления для них. Кислородсодержащие радикалы, в частности радикал супероксидного аниона, гидроксильный радикал (ОН) и алкилпероксильный радикал (OOCR), являются мощными инициаторами перекисного окисления липидов, роль которых хорошо установлена в патогенезе широкого спектра заболевания (например, развитии атеросклероза, прогрессировании фиброза печени).
В результате перекисного окисления липидов в биологических системах накапливаются их конечные продукты, такие как малондиальдегид (MDA), 4-гидрокси-2-ноненол (4-HNE) и F2-изопростанты.
Основания ДНК также очень восприимчивы к окислению ROS, а преобладающим конечным продуктом этого взаимодействия является 8-гидрокси-2-дезоксигуанозин. В результате могут возникнуть мутации и делеции как в ядерной, так и в митохондриальной ДНК. Митохондриальная ДНК особенно подвержена окислительному повреждению из-за ее близости к первому источнику ROS и недостаточной восстановительной способности по сравнению с ядерной ДНК. Эти окислительные модификации приводят к функциональным изменениям в ферментативных и структурных белках, которые могут оказывать существенное физиологическое воздействие. Также хорошо установлена связь между окислительным стрессом и иммунной функцией организма. Механизм иммунной защиты использует повреждающие эффекты окислителей с защитной целью, используя ROS в уничтожении патогенов. В нескольких исследованиях была продемонстрирована взаимозависимость окислительного стресса, иммунной системы и воспаления. Все факторы, ответственные за окислительный стресс, прямо или косвенно участвуют в механизме защиты иммунной системы. Любые изменения, приводящие к иммуносупрессии, могут спровоцировать развитие болезни. Окислительная модификация белков не только изменяет их антигенный профиль, но также усиливает антигенность. Существует несколько примеров аутоиммунных заболеваний, возникающих в результате таких окислительных модификаций, а именно системная красная волчанка, сахарный диабет и диффузная склеродермия. Более того, окислительный стресс представляет дополнительную угрозу для тканей-мишеней, как в случае бета-клеток, продуцирующих инсулин. Окислительный стресс, вызванный неразрешенным и стойким воспалением, может быть основным фактором, влияющим на изменение динамики иммунных реакций. Эти изменения могут создать иммунологический хаос, который может привести к потере архитектурной целостности клеток и тканей, что в конечном итоге приведет к хроническим заболеваниям или онкологии.
Окислительный стресс может запускать развитие аллергии, аутоиммунных или нейродегенеративных заболеваний (например, болезнь Альцгеймера) наряду с измененным ростом клеток, хроническими инфекциями, ангиогенезом и раковыми заболеваниями. Старение является неотъемлемым процессом, характерным для всех живых клеток. Теория окислительного стресса в настоящее время является наиболее приемлемым объяснением старения, которое подтверждает, что увеличение ROS приводит к функциональным изменениям, патологическим состояниям и другим клинически наблюдаемым признакам старения. В нормальных условиях физиологичным является равновесие между уровнем антиоксидантов и клеточными прооксидантами. Окислительный стресс может быть запущен не только стрессорами, но и дефицитом антиоксидантов, приводящим к образованию избыточного количества активного кислорода или азота. Антиоксиданты являются первой линией на пути предотвращения развития стресса. Несколько первичных антиоксидантных ферментов (SOD, каталаза) и несколько пероксидаз катализируют сложный каскад реакций для превращения ROS в более стабильные молекулы, такие как вода и O2. Помимо первичных антиоксидантных ферментов, большое количество вторичных ферментов действуют в тесной связи с малыми молекулярными антиоксидантами с образованием окислительно-восстановительных циклов, которые обеспечивают необходимые кофакторы для первичных антиоксидантных ферментных функций.
Малые молекулярные неферментные антиоксиданты (например, GSH, NADPH, тиоредоксин, витамины E и C и следовые металлы, такие как селен) также действуют как прямые поглотители ROS. Эти ферментативные и неферментные антиоксидантные системы необходимы для поддержания жизни путем поддержания деликатного внутриклеточного редокс-баланса и минимизации нежелательного повреждения клеток, вызванного ROS.
Эндогенные и экзогенные антиоксиданты включают в себя некоторые высокомолекулярные соединения (SOD, GPx, Catalse, альбумин, металлотионеин) и некоторые низкомолекулярные вещества (мочевая кислота, аскорбиновая кислота, липоевая кислота, глутатион, убихинол, токоферол / витамин E, флавоноиды).
Комплексная оценка оксидативного стресса состоит из количественного определения содержания в крови следующих параметров: коэнзим Q10, витамин Е, витамин С, бета-каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин. Диагностика метаболических особенностей организма позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания, используя показатели общего антиоксидантного статуса и перекисного окисления липидов для назначения антиоксидативной терапии.
Для чего используется исследование?
Когда назначается исследование?
Что означают результаты?
Референсные значения
Отдельно для каждого показателя, входящего в состав комплекса:
Возраст |
Реф. значения, нг/мл |
6-12 лет |
41,4 – 476 |
12-20 лет |
25,9 – 353 |
20-40 лет |
24,1 – 595 |
40-60 лет |
19,4 – 792 |
> 60 лет |
28 – 1020 |
Глутатион
В составе глутатионферментного комплекса разрушает радикалы пероксида, предотвращая тем самым разрушение клеточных мембран. Для сохранения активности глутатионпероксидазы, помимо селена, необходимы витамины А, С, Е, серосодержащие аминокислоты. Глутатионзависимые ферменты связывают различные ксенобиотики.
При дефиците глутатиона активируются процессы свободнорадикального окисления в клетках, что способствует:
– повреждению молекулы ДНК;
– повышению риска развития онкологических заболеваний, нарушению состояния кожи, ногтей, волос;
– возможному бесплодию, невынашиванию беременности, мертворождению, врождённым патологиям у ребенка;
– ухудшению дезинтоксикационной функции печени.
Малоновый диальдегид (MDA)
Конечный продукт перекисного окисления липидов. Повышенный уровень MDA наблюдается при:
- тяжелом течении псориаза,
- инсульте, рассеянном склерозе, хронической патологии почек и некоторых инфекциях (сифилис, стрептококковая инфекция);
- онкологии (рак желудка и легких);
- уровне MDA более чем 100 нмоль/мл (считается неблагоприятным прогностическим маркером при ИБС).
8-ОН-дезоксигуанозин
Биологический маркер окислительного стресса, возникающий в результате повреждения молекулы ДНК. Увеличение концентрации свидетельствует j возможном наличии мутаций в клетках и, как правило, о появлении делеций ДНК.
Коэнзим Q10 (убихинон)
Является одним из наиболее мощных антиоксидантов в клетке. Наибольшее количество убихинона содержится в тканях с повышенной энергетической потребностью: сердечная и поперечно-полосатая мускулатура, головной мозг, печень, почки, поджелудочная железа и др. Играет ключевую роль в сократительной способности миокарда и поперечно-полосатой мускулатуры, улучшении кровотока в миокарде, антиаритмическом и гипотензивном действии, повышении толерантности к физической нагрузке, антиатеросклеротическом эффекте, апоптозе и замедлении процессов старения.
Недостаток коэнзима Q10 приводит к:
- развитию кардиологической патологии;
- нарушению работы иммунной системы (частые простудные и инфекционные заболевания);
- расстройствам эндокринной системы и др.
Снижение содержания КоQ10 на 75% приводит к гибели клеток.
Витамин C
Важный клеточный антиоксидант во многих тканях. Снижает риск развития сердечно-сосудистых заболеваний, включая инсульт.
Витамин Е
Один из наиболее эффективных антиоксидантов. Улучшает иммунный статус, снижает риск атеросклероза.
Бета-каротин
Предшественники витамина А – каротиноиды – эффективно уничтожают свободные радикалы, в том числе синглетный кислород, который может привести к развитию неоплазий. Защищает клетки от старения.
Также рекомендуется
[02-029] Клинический анализ крови: общий анализ, лейкоцитарная формула, СОЭ (с микроскопией мазка крови при выявлении патологических изменений)
[40-498] Базовые биохимические показатели
Кто назначает исследование?
Терапевт, врач общей практики.
Литература